
Material point method, an almost complete walkthrough∗

Zhuo Lu (Seth)

March 22, 2019

Contents

1 Introduction 1

2 Prior work 2

3 Notation 2

4 Building blocks 3
4.1 Grid basis function . 3
4.2 Elastic-plastic energy density function . 3
4.3 Internal stress-based forces . 4

5 Full method 5
5.1 Rasterize particle data to grid . 5
5.2 Compute particle volumes (first time only) . 5
5.3 Compute grid forces . 5
5.4 Update velocities on grid . 6
5.5 Grid-based body collisions . 6
5.6 Solve the linear system . 6
5.7 Update deformation gradient . 6
5.8 Update particle velocities . 7
5.9 Particle-based body collisions . 7
5.10 Update particle positions . 7

6 Filling in the missing pieces 8
6.1 Collision handling . 8
6.2 Semi-implicit integration . 8

6.2.1 Force derivative . 8

1 Introduction

This document springs out from my half-semester project for COMPSCI 284B, Spring 2019 at UC Berkeley to make
a baseline snow simulation. It should compile existing references from published literature fairly completely. I guess
this may serve as a useful resource and somewhat complete reference for those who’re genuinely confused when first
attempting to implement the iteration of material point method published by Stomakhin et al. [5] However, I do
recommend trying to study material point method by diving into the the literature first before using this document
as the only source of input for this subject.

This document is written to be rather exhaustive in stepping through the derivations that are often left out in
published literature. However, it is not written with explaining the governing physics equations. An implementation
following the full method in this document is available on GitHub for reference: https://github.com/sethlu/

renderbox-snow.

∗Please be aware that this document is not yet fully proofread.

1

https://github.com/sethlu/renderbox-snow
https://github.com/sethlu/renderbox-snow

2 Prior work

Most of the materials compiled in this document reference existing literature and open-sourced implementations.
Below are a few open-sourced implementations:

• https://github.com/Azmisov/snow

• https://github.com/yuanming-hu/taichi_mpm

• https://github.com/WindQAQ/MPM

3 Notation

Below are a few physical quantities are frequently used in various equations. Non-scalars should be consistently
bolded throughout the document.

• Mass m

• Velocity v

• Displacement x = (x, y, z)

• Time t

• Time step ∆t

• Volume V

• Density ρ

• Force f

• Deformation gradient F

• Grid spacing h

Some of those quantities may relate to a grid node or a particle node. If subject to a grid node, the symbol will
be subscripted with �i, where i = (i, j, k). Other times it may be subscripted with �j to denote a different grid
node. If subject to a particle node, the symbol will be subscripted with �p.

Some quantities vary over time: A variable at time step n will be superscripted as �n. Similarly, a variable at
time step (n+ 1) will be superscripted as �n+1. For instance, the volume for a particle at time 0 is notated as V 0

p .

A grid node location at time step n is referred to as xni ; at time step (n+ 1) it is often referred to as x̂i = xn+1
i ,

representing a deformed location for the grid node. Later we will mention this but the grid node locations remain
unchanged even though we talk about deformations on the grid node.

For a matrix A, its entries are referred to as Aij in a column-major order, i as the column and j as the row
(zero-indexed).

2

https://github.com/Azmisov/snow
https://github.com/yuanming-hu/taichi_mpm
https://github.com/WindQAQ/MPM

4 Building blocks

4.1 Grid basis function

The one-dimensional B-splines function is defined as follows (from Stomakhin et al. [5])

N(x) =


1
2 |x|

3 − x2 + 2
3 0 ≤ |x| < 1

− 1
6 |x|

3 + x2 − 2|x|+ 4
3 1 ≤ |x| < 2

0 otherwise

(1)

The derivative of the one-dimensional B-splines function is then

δN(x) =



1
2x

2 − 2|x|+ 2 −2 ≤ x < −1

− 3
2x

2 + 2|x| −1 ≤ x < 0
3
2x

2 − 2|x| 0 ≤ x < 1

− 1
2x

2 + 2|x| − 2 1 ≤ x < 2

0 otherwise

(2)

Moving to three dimensions, the B-splines function is defined for each grid-particle pair as

Ni(xp) = N(
1

h
(xp − ih))N(

1

h
(yp − jh))N(

1

h
(zp − kh)) (3)

= N(
1

h
(xp − xi))N(

1

h
(yp − yi))N(

1

h
(zp − zi)) (4)

The gradient ∇Ni(xp) can be computed as (from Jiang et al. [4])

∇Ni(xp) =

 1
hδN(1

h (xp − ih))N(1
h (yp − jh))N(1

h (zp − kh))
N(1

h (xp − ih)) 1
hδN(1

h (yp − jh))N(1
h (zp − kh))

N(1
h (xp − ih))N(1

h (yp − jh)) 1
hδN(1

h (zp − kh))

 (5)

We define the weight and its gradient as (from Stomakhin et al. [5])

wip = Ni(xp) (6)

∇wip = ∇Ni(xp) (7)

4.2 Elastic-plastic energy density function

Given elastic and plastic deformations, FE and FP , the elastic-plastic energy density function is defined as (from
Stomakhin et al. [5])

Ψ(FE ,FP) = µ||FE −RE ||2F +
λ

2
(JE − 1)2 (8)

where

µ = µ0e
ξ(1−JP)

λ = λ0e
ξ(1−JP)

JE = detFE

JP = detFP

The term RE is obtained by polar decomposition of FE = RESE . The µ0 and λ0 are the initial Lamé parameters.
And ξ is the hardening parameter.

Partial derivative of energy density function

The partial derivative with respect to elastic deformation is (from Stomakhin et al. [6])

∂Ψ

∂FE
(FE ,FP) = 2µ(FE −RE) + λ(JE − 1)JEF

−T
E (9)

3

4.3 Internal stress-based forces

In this section, x̂ refers to x̂i of all the grid nodes.
Given an elasto-plastic energy density function Ψ(FE ,FP), we can evaluate it at each particle node as Ψp =

Ψ(F̂Ep
(x̂),F nPp

) using the elastic and plastic parts of the particle deformation gradient F̂Ep
(x̂) and F nPp

. The
deformed locations of all grid nodes are represented as x̂.

The MPM approximation of the total elastic potential relates to x̂ as (from Stomakhin et al. [5])

Φ(x̂) =
∑
p

V 0
p Ψ(F̂Ep

(x̂),F nPp
) (10)

where the elastic deformation gradient relates to x̂ as (from Stomakhin et al. [5])

F̂Ep(x̂) = (I +
∑
i

(x̂i − xni)(∇wip)
T)F nEp

(11)

As an extra note, we can also talk about δFEp
over some increment δxi

δFEp
=

∑
i

δxi(∇wip)
TF nEp

(12)

The stress-based force at each grid node is given as (from Stomakhin et al. [5])

fi(x̂) = − ∂Φ

∂x̂i
(x̂)

= −
∑
p

V 0
p

∂Ψ

∂FE
(F̂Ep

(x̂),F nPp
)(F nEp

)T∇wnip (13)

= −
∑
p

V np σp∇wnip

where the Cauchy stress σp = 1
Jn
P

∂Ψ
∂FE

(F̂Ep
(x̂),F nPp

)(F nEp
)T .

Force derivative for semi-implicit integration

Please find the derivations in the semi-implicit integration section.

4

5 Full method

Unless otherwise specified, the update method is based off the paper by Stomakhin et al. [5] Some equations are
expanded for ease of reference.

5.1 Rasterize particle data to grid

The particle mass and velocity are transferred to the grid.
The grid mass mi is computed as

mn
i =

∑
p

mpw
n
ip (14)

The grid velocity vi can be computed with the following, as weighted by grid mass

vi =

∑
p v

n
pmpw

n
ip

mn
i

(15)

5.2 Compute particle volumes (first time only)

The initial particle volume V 0
p is computed as

V 0
p =

mp

ρ0
p

(16)

where the density for particle ρ0
p is estimated as (assuming constant grid node volume h3)

ρ0
p =

∑
im

0
iw

0
ip

h3
(17)

5.3 Compute grid forces

Recall that the internal stress-based force per grid node is defined as

fi(x̂) = −
∑
p

V 0
p

∂Ψ

∂FE
(F̂Ep(x̂),F nPp

)(F nEp
)T∇wnip

Also recall the elastic deformation gradient

F̂Ep(x̂) = (I +
∑
i

(x̂i − xni)(∇wip)
T)F nEp

Since the grid nodes does not move (even under deformation), we can set x̂ = xn. Then we have

F̂Ep
(x̂) = F nEp

(18)

Then we can compute the internal force

fni = fi(x
n)

= −
∑
p

V 0
p

∂Ψ

∂FE
(F nEp

,F nPp
)(F nEp

)T∇wnip

= −
∑
p

V 0
p (2µ(F nEp

−Rn
Ep

) + λ(JEp
− 1)JEp

(F nEp
)−T)(F nEp

)T∇wnip

= −
∑
p

V 0
p (2µ(F nEp

−Rn
Ep

)(F nEp
)T + λ(JEp

− 1)JEp
I)∇wnip (19)

where

5

µ = µ0e
ξ(1−JPp)

λ = λ0e
ξ(1−JPp)

JEp
= detFEp

JPp
= detFPp

The term REp
is obtained by polar decomposition of FEp

= REp
SEp

. The µ0 and λ0 are the initial Lamé
parameters. And ξ is the hardening parameter.

Then we can combine the internal force fni with some external force g to find the net force acting on the grid
node. Here we assume g is constant so it won’t affect the gradient taken on the net force over the grid.

5.4 Update velocities on grid

The grid velocity is computed as

v∗i = vni + ∆tm−1
i (fni + g) (20)

5.5 Grid-based body collisions

Refer to the collision handling section below to update v∗i .

5.6 Solve the linear system

With explicit Euler integration, the velocity is updated as

vn+1
i = v∗i (21)

For semi-implicit integration, refer to the section below.

5.7 Update deformation gradient

The deformation gradient for a particle (elastic-plastic combined) is updated as

F n+1
p = (I + ∆t∇vn+1

p)F nEp
F nPp

= F n+1
Ep

F n+1
Pp

(22)

where the velocity gradient

∇vn+1
p =

∑
i

vn+1
i (∇wnip)T (23)

Initially, all changes are attributed to the elastic part (the hat-symbol here represents a temporary value)

F̂ n+1
Ep

= (I + ∆t∇vn+1
p)F nEp

Since some parts of F n+1
Ep

may exceed the critical deformation threshold, the singular value decomposition is
computed for

F̂ n+1
Ep

= UpΣ̂pV
T
p

Then each of the entries of Σp is clamped so it’s within the critical compression/stretch range Σp = clamp(Σ̂p, [1−
θc, 1 + θs]). The clamped Σp is then used to construct the final elastic deformation for the particle

F n+1
Ep

= UpΣpV
T
p (24)

The final plastic deformation for the particle is computed as

F n+1
Pp

= (F n+1
Ep

)−1F n+1
p = VpΣ

−1
p U

T
p F

n+1
p (25)

6

5.8 Update particle velocities

The particle velocity is updated with part FLIP and part PIC [5]

vn+1
p = (1− α)vn+1

PICp
+ αvn+1

FLIPp
(26)

vn+1
PICp

=
∑
i

vn+1
i wnip (27)

vn+1
FLIPp

= vnp +
∑
i

(vn+1
i − vni)wnip (28)

5.9 Particle-based body collisions

Refer to the collision handling section below to update vn+1
p .

5.10 Update particle positions

The particle positions are updated as

xn+1
p = xnp + ∆tvn+1

p (29)

Up to this point, your simulation should look fairly decent, though without external collisions. However,
with the explicit update step, the stiffness from the internal forces is very likely to blow up at larger time steps.

7

6 Filling in the missing pieces

6.1 Collision handling

From Stomakhin et al. [5], given node velocity v, its relative velocity vrel to the collider object vco is computed as

vrel = v − vco (30)

Given the surface normal of the collider object n (unit length) we can compute

vn = vrel · n (31)

If vn ≥ 0, we could tell the node is moving away from the colliding surface as it’s relatively moving in the direction
of the surface normal. In that way, there is no collision.

We can compute the tangential portion of the relative velocity as

vt = vrel − vnn (32)

When ||vt|| ≤ −µvn, we apply sticking impulse by setting

v′rel = 0 (33)

Otherwise, we apply dynamic friction and set

v′rel = vt + µvn
vt
||vt||

(34)

We can also set v′rel = 0 unconditionally when wanting to have the snow stick to vertical or underhanging surfaces.
The velocity due to collision is finally updated as

v′ = v′rel + vco (35)

6.2 Semi-implicit integration

Recall that x̂ = xn+1 = xn + ∆tvn+1 and v∗ is the velocity from explicit Euler.
The semi-implicit velocity update is formed using (from Stomakhin et al. [5])

vn+1
i = vni + ∆tm−1

i ((1− β)fni + βfn+1
i)

= vni + ∆tm−1
i (fni + β(fn+1

i − fni))

= (vni + ∆tm−1
i fni) + ∆tm−1

i β(fn+1
i − fni)

= v∗i + ∆tm−1
i βδfi(x̂)

where β ∈ [0, 1] for explicit vs semi-implicit integration.
This leads to a sparse system to solve for vn+1

i (where we can apply conjugate residual method)

vn+1
i −∆tm−1

i βδfi(x̂) = v∗i (36)

Notice that δfi relates to x̂, thus also dependent on vn+1.
The next few sections, whose derivations largely inspired by de Long [2], will give us δfi(x̂).

6.2.1 Force derivative

The derivative of the grid node force is the following (for some arbitrary increment δxj)

δfi(x̂) = −
∑
j

∂fi
∂x̂j

(x̂)δxj (37)

= −
∑
j

∂2Φ

∂x̂i∂x̂j
(x̂)δxj (38)

= −
∑
p

V 0
pAp(F

n
Ep

)T∇wnip (39)

8

where

Ap =
∂2Ψ

∂FEp
∂FEp

(F̂Ep(x̂),F nPp
) : (

∑
j

δxj(∇wTjp)F nEp
) (40)

Recall that δFEp
may be expressed as

δFEp
=

∑
j

δxj(∇wnjp)TF nEp

Let δxj = ∆tvn+1
j (the velocity that we wish to solve). Then the above is equivalent to

δFEp
=

∑
j

∆tvn+1
j (∇wnjp)TF nEp

(41)

Ap can then be rewritten as (from Stomakhin et al. [6])

Ap =
∂2Ψ

∂FEp
∂FEp

(F̂Ep
(x̂),F nPp

) : δFEp
(42)

= 2µ(δFEp − δREp) + λJEpF
−T
Ep

(JEpF
−T
Ep

: δFEp) + λ(JEp − 1)δ(JEpF
−T
Ep

) (43)

where

µ = µ0e
ξ(1−JPp)

λ = λ0e
ξ(1−JPp)

JEp
= detFEp

JPp
= detFPp

The µ0 and λ0 are the initial Lamé parameters. The additional terms will be derived in the following sections.
The rest of this section will drop the �Ep

subscript for ease of notation.

Compute δREp

The technical report (from Stomakhin et al. [6]) suggests the following method to find δREp
.

Recall F = RS from polar decomposition, where R being a unitary matrix (R∗R = RR∗ = I) and S being a
positive-semidefinite Hermitian matrix (S = S∗).

δF = δRS +RδS (44)

RT δF = (RT δR)S + S (RTR = I)

δF TR = ST (RT δR)T + ST

RT δF − δF TR = (RT δR)S + S − ST (RT δR)T − ST

= (RT δR)S + S − S(RT δR)T − S (S = ST)

= (RT δR)S − S(RT δR)T

The technical report [6] showed that RT δR must be skew-symmetric. Then, with (RT δR)T = −RT δR, we have

RT δF − δF TR = (RT δR)S − S(RT δR)T

= (RT δR)S + S(RT δR) (45)

The equation above only tells us about RT δR, but we really want δR

9

RT δR = RT δR

RRT δR = R(RT δR)

IδR = R(RT δR) (RRT = I)

δR = R(RT δR) (46)

Given RT δR, the δR should not be difficult to compute. That leads us to compute RT δR. Here we present a
fairly exhaustively step-by-step derivation.

Again, since RT δR is skew-symmetric with diagonal entries of 0, we can write it as

RT δR =

 0 x y
−x 0 z
−y −z 0



RT δF − δF TR = (RT δR)S + S(RT δR)

=

 0 x y
−x 0 z
−y −z 0

S + S

 0 x y
−x 0 z
−y −z 0


=

 0 x y
−x 0 z
−y −z 0

S00 S10 S20

S01 S11 S21

S02 S12 S22

 +

S00 S10 S20

S01 S11 S21

S02 S12 S22

 0 x y
−x 0 z
−y −z 0


=

 xS01 + yS02 xS11 + yS12 xS21 + yS22

−xS00 + zS02 −xS10 + zS12 −xS20 + zS22

−yS00 − zS01 −yS10 − zS11 −yS20 − zS21

 +

−xS10 − yS20 xS00 − zS20 yS00 + zS10

−xS11 − yS21 xS01 − zS21 yS01 + zS11

−xS12 − yS22 xS02 − zS22 yS02 + zS12


=

 x(S01 − S10) + y(S02 − S20) x(S00 + S11) + y(S12) + z(−S20) x(S21) + y(S00 + S22) + z(S10)
x(−S00 − S11) + y(−S21) + z(S02) x(S01 − S10) + z(S12 − S21) x(−S20) + y(S01) + z(S11 + S22)
x(−S12) + y(−S00 − S22) + z(−S01) x(S02) + y(−S10) + z(−S11 − S22) y(S02 − S20) + z(S12 − S21)


Since S from polar decomposition is a positive-semidefinite Hermitian matrix (Sij = Sji), it follows that

RT δF − δF TR =

 0 ξ1 ξ2
−ξ1 0 ξ3
−ξ2 −ξ3 0


ξ1 = x(S00 + S11) + y(S12) + z(−S20) = x(S00 + S11) + y(S21) + z(−S02)

ξ2 = x(S21) + y(S00 + S22) + z(S10) = x(S12) + y(S00 + S22) + z(S01)

ξ3 = x(−S20) + y(S01) + z(S11 + S22) = x(−S02) + y(S10) + z(S11 + S22)

Then the entries of RT δR can be solved as

(RT δF − δF TR)10

(RT δF − δF TR)20

(RT δF − δF TR)21

 =

ξ1ξ2
ξ3


=

S00 + S11 S12 −S20

S21 S00 + S22 S10

−S20 S01 S11 + S22

xy
z


xy
z

 =

S00 + S11 S12 −S20

S21 S00 + S22 S10

−S20 S01 S11 + S22

−1 (RT δF − δF TR)10

(RT δF − δF TR)20

(RT δF − δF TR)21

 (47)

Then with x, y and z, we can compute δR with the equation derived earlier.

10

Compute JEpF
−T
Ep

Since J = detF and the inverse of a matrix is its cofactors transposed then divided by its determinant, we know the
following (from de Long [2])

JF−T = cofactor(F) (48)

=

 F11F22 − F12F21 −F01F22 + F02F21 F01F12 − F02F11

−F10F22 + F12F20 F00F22 − F02F20 −F00F12 + F02F10

F10F21 − F11F20 −F00F21 + F01F20 F00F11 − F01F10

 (49)

Compute δ(JEp
F−TEp

)

The technical report (from Stomakhin et al. [6]) suggests the following

δ(JF−T) =
∂

∂F
(JF−T) : δF

where the colon-notation here (A : B) represents taking a summation over the kl indices of AijklBkl.
Let’s first watch the cofactor matrix of F (from Ding et al. [3])

∂

∂F
(JF−T) =



0 0 0
0 F22 −F12

0 −F21 F11

  0 0 0
−F22 0 F02

F21 0 −F01

  0 0 0
F12 −F02 0
−F11 F01 0


0 −F22 F12

0 0 0
0 F20 −F10

  F22 0 −F02

0 0 0
−F20 0 F00

 −F12 F02 0
0 0 0
F10 −F00 0


0 F21 −F11

0 −F20 F10

0 0 0

 −F21 0 F01

F20 0 −F00

0 0 0

  F11 −F01 0
−F01 F00 0

0 0 0




Then we can compute each of the entries of δ(JF−T) as

δ(JF−T)ij =
∂

∂F
(JF T)ij : δF

=
∑
kl

∂

∂F
(JF T)ijklδFkl

To live up to the exhaustiveness of this mostly complete handbook, we have

δ(JF−T) =



0 0 0
0 F22 −F12

0 −F21 F11

 : δF

 0 0 0
−F22 0 F02

F21 0 −F01

 : δF

 0 0 0
F12 −F02 0
−F11 F01 0

 : δF

0 −F22 F12

0 0 0
0 F20 −F10

 : δF

 F22 0 −F02

0 0 0
−F20 0 F00

 : δF

−F12 F02 0
0 0 0
F10 −F00 0

 : δF

0 F21 −F11

0 −F20 F10

0 0 0

 : δF

−F21 0 F01

F20 0 −F00

0 0 0

 : δF

 F11 −F01 0
−F01 F00 0

0 0 0

 : δF


(50)

where the colon-notation here (A : B, a little overloaded) representa a Frobenius inner product (i.e. sum of
element-wise products from both matrices).

11

References

[1] Thomas Breekveldt. Analysis of a material point method for snow. Master’s thesis, 2017.

[2] Esther de Long. Simulating snow with the material point method. Master’s thesis, Bournemouth University,
2015.

[3] Yang Ding, Luowen Qian, and Hai Zhang. Simulating snow in houdini, 2018.

[4] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. The material point
method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses, SIGGRAPH ’16, pages 24:1–
24:52, New York, NY, USA, 2016. ACM.

[5] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material point method
for snow simulation. ACM Trans. Graph., 32(4):102:1–102:10, July 2013.

[6] Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. Material point method
for snow simulation. Technical report, 2013.

12

	Introduction
	Prior work
	Notation
	Building blocks
	Grid basis function
	Elastic-plastic energy density function
	Internal stress-based forces

	Full method
	Rasterize particle data to grid
	Compute particle volumes (first time only)
	Compute grid forces
	Update velocities on grid
	Grid-based body collisions
	Solve the linear system
	Update deformation gradient
	Update particle velocities
	Particle-based body collisions
	Update particle positions

	Filling in the missing pieces
	Collision handling
	Semi-implicit integration
	Force derivative

